On 2-local nonlinear surjective isometries on normed spaces and C$^*$-algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surjective Isometries on Grassmann Spaces

Let H be a complex Hilbert space, n a given positive integer and let Pn(H) be the set of all projections on H with rank n. Under the condition dimH ≥ 4n, we describe the surjective isometries of Pn(H) with respect to the gap metric (the metric induced by the operator norm).

متن کامل

Approximate Isometries on Finite-dimensional Normed Spaces

Every ε-isometry u between real normed spaces of the same finite dimension which maps the origin to the origin may by uniformly approximated to within 2ε by a linear isometry. Under a smoothness hypothesis, necessary and sufficient conditions are obtained for the same conclusion to hold for a given ε-isometry between infinite-dimensional Banach spaces.

متن کامل

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Surjective Real-Linear Uniform Isometries Between Complex Function Algebras

In this paper, we first give a description of a surjective unit-preserving real-linear uniform isometry $ T : A longrightarrow B$,  where $ A $ and $ B $ are complex function spaces on compact Hausdorff spaces $ X $ and $ Y $, respectively, whenever ${rm ER}left (A, Xright ) = {rm Ch}left (A, Xright )$ and ${rm ER}left (B, Yright ) = {rm Ch}left (B, Yright )$. Next, we give a description of $ T...

متن کامل

On Probabilistic 2-normed Spaces

In [16] K. Menger proposed the probabilistic concept of distance by replacing the number d(p, q), as the distance between points p, q, by a distribution function Fp,q. This idea led to development of probabilistic analysis [3], [11] [18]. In this paper, generalized probabilistic 2-normed spaces are studied and topological properties of these spaces are given. As an example, a space of random va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2020

ISSN: 0002-9939,1088-6826

DOI: 10.1090/proc/14949